Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

G. L. Morgans, W. A. L. van Otterlo,* J. P. Michael and M. A. Fernandes

School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa

Correspondence e-mail:
willem@aurum.wits.ac.za

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.028$
$w R$ factor $=0.073$
Data-to-parameter ratio $=20.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

1-[3,5-Bis(bromomethyl)-2,4,6-trimethoxybenzyl]-3,5-bis(bromomethyl)-2,4,6-trimethoxybenzene

The crystal structure of the title compound, $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{Br}_{4} \mathrm{O}_{6}$, confirms that it consists of two hexasubstituted aromatic units linked by a central methylene group. The molecule lies on a crystallographic twofold axis that passes through the methylene bridging atom. Examination of the extended structure reveals the presence of ribbons of molecules held together by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions.

Comment

The synthesis of hexasubstituted aromatic compounds has always been a particular challenge (Saito \& Yamamoto, 2000; Gevorgyan \& Yamamoto, 1999). Apart from being found as structural components of natural products, such as compound (1) (Blackman \& Matthews, 1982), these types of compounds have also been used as candidates for nonlinear optical materials, for example compound (2) (Cho et al., 2002).

(4)

(5)

Our research group has utilized polysubstituted aromatic rings in our synthetic endeavours (van Otterlo et al., 2004; Michael et al., 2001; de Koning et al., 2000) and we wished to synthesize a number of hexasubstituted aromatic systems to use as potential molecular scaffolds. Towards this end, we repeated experimental work reported by Cho et al. (2002) and were able to isolate successfully 22% of the hexasubstituted product (4), by treating 1,3,5-trimethoxybenzene (3) with paraformaldehyde and hydrobromic acid (see scheme).

Received 29 November 2005
Accepted 5 December 2005
Online 10 December 2005

Figure 1
View of the molecule of (5), showing the atom-numbering scheme for the asymmetric unit. Unlabelled atoms are related to labelled atoms by ($-x$, $y, \frac{1}{2}-z$) with atom C7 sitting on the twofold axis. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown with an arbitrary radius.

Figure 2
$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ (see Table 1 for details) hydrogen bonding (dashed lines) in the title compound, forming a chain of molecules (or ribbon) running down the c axis. Each molecule is related to the next by a centre of inversion. Symmetry codes for the various molecules (and independent unit making up each molecule) are as follows: (i) x, y, z; (ii) $-x, y,-z+\frac{1}{2}$; (iii) $-x,-y,-z$; (iv) $x,-y, z-\frac{1}{2}$; (v) $-x,-y,-z+1$; (vi) x, $-y, z+\frac{1}{2}$.

However, another crystalline product was obtained in a yield of 6% after chromatography and recrystallization. NMR spectroscopic evidence suggested that the compound was a dimer and the structure of the title compound, (5), was confirmed by a single-crystal X-ray diffraction study. This compound is probably formed when the protonated hydroxymethyl intermediate is attacked in a nucleophilic manner by another aromatic molecule.

Compound (5) crystallizes in the space group Pbcn with one half-molecule in the asymmetric unit. The other half is related by a crystallographic twofold axis through the methylene (C2) bridging atom (Fig. 1). As a consequence, the molecule possesses C_{2} point group symmetry. Although the molecule has two aryl rings, there are no $\mathrm{C}-\mathrm{H} \cdots \pi$ or $\pi-\pi$ interactions. There are, however, intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ (Table 1) hydrogen bonds acting along the c axis, the inter-

Figure 3
Each molecule in the ribbon described in Fig. 2 is $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonded to a neighbouring ribbon related by a b glide. In addition, molecules in ribbons related by translation along the b axis are involved in a $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interaction (see Table 1 for details). Symmetry codes for the various molecules (and independent unit making up each molecule) are as follows: (i) x, y, z; (ii) $-x, y,-z+\frac{1}{2}$; (iii) $x, y+1, z$; (iv) $-x, y+1$, $-z+\frac{1}{2} ;$ (v) $-x+\frac{1}{2}, y-\frac{1}{2}, z$; (vi) $x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (vii) $-x+\frac{1}{2}, y+\frac{1}{2}, z ;$ (viii) $x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.
action being between a benzyl bromide group and a methoxy group, to produce a ribbon of molecules running down the c axis (Fig. 2). Each molecule within the ribbon is related to the next by an inversion centre. These ribbons are further hydrogen-bonded to neighbouring ribbons related by b glide planes through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and to ribbons related by translation along the b axis through $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions (Table 1 and Fig. 3).

Experimental

A thick-walled Carius tube (100 ml) was charged with $1,3,5-$ trimethoxybenzene ($3.421 \mathrm{~g}, 20.34 \mathrm{mmol}$), dry glacial acetic acid $(10 \mathrm{ml})$ and paraformaldehyde $(2.016 \mathrm{~g}, 67.13 \mathrm{mmol})$. The mixture was shaken to dissolve the solids and then cooled to $273 \mathrm{~K} . \mathrm{HBr}$ (30%) in glacial acetic acid (15 ml) was added and the contents of the tube were frozen in liquid N_{2} and sealed. The tube was warmed to room temperature and then heated in an oil bath at 333 K for 3 h . After cooling to room temperature, the tube contents were poured into water (100 ml) and extracted once with ethyl acetate (200 ml). The organic phase was dried (magnesium sulfate), filtered and evaporated under reduced pressure to give a red residue. Silica-gel column chromatography with ethyl acetate:hexane (1:19) first afforded known compound (4) as a white powder $(1.919 \mathrm{~g}, 4.29 \mathrm{mmol}$, 22%), followed by product (5) as a beige-coloured powder. Recrystallization of the latter powder from hexane:acetone (4:1) afforded pale-brown block crystals ($0.823 \mathrm{~g}, 1.14 \mathrm{mmol}, 6 \%$, m.p. $350-352 \mathrm{~K}$). Spectroscopic data: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ, p.p.m.): 3.78 (12H, $\left.s, 4 \times \mathrm{OCH}_{3}\right), 4.08\left(2 \mathrm{H}, s, \mathrm{CH}_{2}\right), 4.11\left(6 \mathrm{H}, s, 2 \times \mathrm{OCH}_{3}\right), 4.60(8 \mathrm{H}, s$, $\left.4 \times \mathrm{CH}_{2} \mathrm{Br}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, , p.p.m.): $20.0\left(\mathrm{CH}_{2}\right), 23.3$ $\left(4 \times \mathrm{CH}_{2} \mathrm{Br}\right), 61.7\left(4 \times \mathrm{OCH}_{3}\right), 62.5\left(2 \times \mathrm{OCH}_{3}\right), 122.3(4 \times \mathrm{ArC})$, $124.5(2 \times \mathrm{ArC}), 157.5(2 \times \mathrm{ArC}-\mathrm{O})$, $159.7(4 \times \mathrm{ArC}-\mathrm{O})$; $v_{\max }$ (thin film, NaCl plate, cm^{-1}): 1578, 1457, 1414, 1324, 1265, 1216, 1195, 1152, 1102, 1002; m/z: 720.1 ($M^{+}, 5 \%$), 644.2 (9), 643.2 (36), 642.1 (25), 641.2 (100), 640.2 (26), 639.1 (99), 638.2 (9), 545.1 (16), 419.2 (6), 369.1 (9), 367.1 (18), 365.1 (9), 280.1 (9), 207.2 (15), 193.2 (11), 177.1 (10), 163.1 (9) 147.1 (9).

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{Br}_{4} \mathrm{O}_{6}$
$M_{r}=720.09$
Orthorhombic, Pbcn
$a=22.737(7) \AA$
$b=7.280(2) \AA$
$c=15.280(4) \AA$
$V=2529.2(13) \AA^{3}$
$Z=4$
$D_{x}=1.891 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector	3056 independent reflections
\quad diffractometer	2374 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.052$
Absorption correction: integration	$\theta_{\max }=28.0^{\circ}$
$\quad(X P R E P ;$ Bruker, 1999 $)$	$h=-30 \rightarrow 29$
$T_{\min }=0.220, T_{\max }=0.347$	$k=-9 \rightarrow 7$
13104 measured reflections	$l=-19 \rightarrow 20$

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0418 P)^{2}\right]$
$w R\left(F^{2}\right)=0.073$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=0.98$	$(\Delta / \sigma)_{\max }=0.001$
3056 reflections	$\Delta \rho_{\max }=0.67 \mathrm{e} \AA^{-3}$
153 parameters	$\Delta \rho_{\min }=-0.61 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 C \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.37	$3.281(3)$	155
$\mathrm{C} 11-\mathrm{H} 11 B \cdots 1^{\text {ii }}$	0.99	2.49	$3.287(3)$	138
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{Br}^{\text {iii }}$	0.98	3.04	$3.874(3)$	143
$\mathrm{C} 8-\mathrm{H} 8 C \cdots \mathrm{Br}^{\mathrm{iv}}$	0.98	3.06	$3.860(3)$	140
Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2}, z \cdot$ (ii) $x,-y, z+\frac{1}{2} \cdot\left(\right.$ (iii) $x,-y z-\frac{1}{2} \cdot($ iv) $x, y-1, z$				

H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with $\mathrm{C}-\mathrm{H}$ bond lengths of $0.99\left(\mathrm{CH}_{2}\right)$
or $0.98 \AA\left(\mathrm{CH}_{3}\right)$, and with $U_{\text {iso }}(\mathrm{H})=1.2\left(\mathrm{CH}_{2}\right)$ or $1.5\left(\mathrm{CH}_{3}\right)$ times $U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the National Research Foundation (NRF, GUN 2053652), Pretoria, and the University of the Witwatersrand (Sellschop Award and Science Faculty Research Committee). Professor C. B. de Koning is thanked for many helpful discussions. Mr R. Mampa and Mr T. van der Merwe are also thanked for providing the NMR and mass spectroscopy services, respectively.

References

Blackman, A. J. \& Matthews, D. J. (1982). Phytochemistry, 21, 2141-2142.
Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus (Version 6.02, includes XPREP and SADABS) and SHELXTL (Version 5.1, includes XS, XL, XP, XSHELL). Bruker AXS Inc., Madison, Wisconsin, USA.
Cho, B. R., Chajara, K., Oh, H. J., Son, K. H. \& Jeon, S.-J. (2002). Org. Lett. 4, 1703-1706.
Gevorgyan, V. \& Yamamoto, Y. (1999). J. Organomet. Chem. 576, 232-247. Keller, E. (1997). SCHAKAL97. University of Freiberg, Germany.
Koning, C. B. de, Michael, J. P. \& van Otterlo, W. A. L. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 799-811.
Michael, J. P., de Koning, C. B., Petersen, R. L. \& Stanbury, T. V. (2001). Tetrahedron Lett. 42, 7513-7516.
Otterlo, W. A. L. van, Michael, J. P., Fernandes, M. A. \& de Koning, C. B. (2004). Tetrahedron Lett. 45, 5091-5094.

Saito, S. \& Yamamoto, Y. (2000). Chem. Rev. 100, 2901-2915.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

